James Schnable

James Schnable with the University of Nebraska is part of a research team working to breed plants with the ability to use nitrogen more efficiently than today’s crops.

Synthetic nitrogen fertilizer is lauded as one of the biggest agricultural breakthroughs of the 20th century, sparking a boom in food production that supported a global population that grew from 1.6 billion to 6 billion.

A century later, the global population — and its food demands — continue to climb. Today’s agricultural researchers are turning to plant genomics to find solutions for growing crops more sustainably with fewer inputs, including nitrogen fertilizer.

According to a University of Nebraska news release, a Nebraska research team and collaborators at the Alabama- based HudsonAlpha Institute for Biotechnology envision a solution that would reduce nitrogen fertilizer use without sacrificing yield or profit: Plants bred with the ability to use nitrogen more efficiently than today’s crops.

In the Corn Belt, for example, crops are unable to use 40 percent of the fertilizer applied to them.

Although nitrogen fertilizer is an important tool for large-scale food production, it’s not without downsides, from the natural resources used to manufacture the fertilizer, to the cost to producers’ bottom lines, to the environmental impacts resulting from overuse, which include reduced water quality and aquatic dead zones that threaten marine life.

“Plants with better nitrogen efficiency would mitigate some of the problems of excessive fertilizer because we could reduce the amount of nitrogen required to get the same yield,” said James Schnable, assistant professor of agronomy and horticulture.

“And it would help farmers be proactive in reducing their fertilizer use, whether to save money or to cope with environmental regulations that may come about.”

To produce this heightened efficiency, the team is combining genomics, biotechnology and automated phenotyping in a three-phase research plan focused on sorghum. The cereal crop is considered vital to solving food insecurity because it’s relatively water- and nitrogen-efficient and thrives in varied climates.

First, the HudsonAlpha group will comb through crop data to identify sorghum’s key gene networks involved in nitrogen use, identifying them as targets for change. Husker agronomist Tom Clemente will then use cutting-edge genome editing technology to add genetic variations that govern these networks, producing new varieties to pass on to Schnable and Nebraska researchers Yufeng Ge, assistant professor of biological systems engineering, and Jinliang Yang, assistant professor of agronomy and horticulture. That group will work together to use automated phenotyping to analyze the new sorghum breeds’ traits.

Then, the cycle begins again as Schnable will return findings to the HudsonAlpha team, which can further home in on the gene networks at play.

“The project is innovative because we’re closing the loop,” Schnable said. “It’s key to have this integration where you can make predictions, make edits and after you see what happens, go back and make new and better predictions.”

Schnable’s work, called high-throughput phenotyping, capitalizes on the university’s state-of-the-art LemnaTec High-Throughput Plant Phenotyping System. Powerful cameras will produce high-resolution images of the modified sorghum plants across their 12- to 18-week life cycle. Software will then analyze their biomass and nitrogen abundance, providing clues about whether the genome edits succeeded in boosting nitrogen efficiency.